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Motivation

Suppose Alice has an arbitrary function f : Fn
2 → F2.

Alice claims that her function is linear (i.e. f (x) + f (y) = f (x + y)
for all x , y ∈ Fn

2)

Ex. odd5(01100) + odd5(10101) = 0 + 1 = 1

odd5(01100 + 10101) = odd5(11001) = 1

Our verifier wants to verify if she actually does.

Naive approach: test all possible pairs (x , y) (this is inefficient)

We can use randomness to verify if the prover is actually saying what
they have.
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The BLR Test

Definition (BLR Test)

Let f : Fn
2 → F2 be a function.

1 Choose x , y ∼ Fn
2.

2 Query f at x , y , and x + y .

3 Accept if f (x) + f (y) = f (x + y).

Blum, Luby, and Rubinfield showed that, given the above test accepts
with high probability, f is close to being linear. [1, 2]

More formally: If the test accepts with probability 1− ϵ, f differs
from a linear function at a proportion of at most ϵ entries.

It is much faster, but it only tests approximate linearity.

Ex. odd′5(x) = odd5(x) ∀x ̸= 00000, odd′5(00000) = 1
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The BLR Test (cont.)

This naturally leads us to a more ”distributed” version of the BLR test.

Suppose that we have three provers, say Alice, Bob and Charlie, each
with functions f (x), g(x), h(x) respectively that a verifier can query.
Alice, Bob, and Charlie cannot communicate.
The verifier wants to determine if f , g and h are all equal to some
linear function.
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The Distributed BLR

More formally:

Definition

Let provers A, B, C have functions f , g , h : Fn
2 → F2. The verifier

performs the following tests each with probability 1/2:

1 (Consistency) Select x ∼ Fn
2. Query f (x), g(x), and h(x). Accept if

f (x) = g(x) = h(x).

2 (Linearity) Select x , y ∼ Fn
2. Query f (x), g(y), and h(x + y). Accept

if f (x) + g(x) = h(x + y).

The provers can have a number of different strategies that they may use.
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Strategies

A determinstic strategy is given by (not necessarily linear) functions
f , g , h : Fn

2 → F2 which the provers use to respond.

f (x)

x

g(y)y

h(z)

z
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Strategies (cont.)

A strategy with shared randomness is a probabilistic mixture of
deterministic strategies given by {(p(λ), fλ, gλ, hλ)}λ for
fλ, gλ, hλ : Fn

2 → F2 and p(λ) ∈ [0, 1].
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Strategies (cont.)

A strategy with shared randomness is a probabilistic mixture of
deterministic strategies given by {(p(λ), fλ, gλ, hλ)}λ for
fλ, gλ, hλ : Fn

2 → F2 and p(λ) ∈ [0, 1] for each λ.

We may model this as a joint probability distribution over the outputs:

p(a, b, c |x , y , z) =
∑
λ

p(λ)δfλ(x)=aδgλ(y)=bδhλ(z)=c

where δj=k = 1 if j = k and 0 otherwise.
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Strategies (cont.)

An entangled strategy (A,B,C , |ψ⟩) is a strategy where the players
each have measurements {Aa

x}, {Bb
y } and {C c

z } and share
entanglement, or a state |ψ⟩. They make measurements on the state
depending on x , y and z , deciding the distribution:

p(a, b, c |x , y , z) = ⟨ψ|Aa
x ⊗ Bb

y ⊗ C c
z |ψ⟩

a

x

by

c

z

|ψ⟩ |ψ⟩
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Strategies (cont.)

Definition

Let provers A, B, C have some strategy. The verifier performs the
following tests each with probability 1/2:

1 (Consistency) Select x ∼ Fn
2. Send x to A,B,C , and receive outputs

a, b, c. Accept if a = b = c .

2 (Linearity) Select x , y ∼ Fn
2. Send x to A, y to B and x + y to C .

Receive outputs a, b, c . Accept if a+ b = c .

The winning probability of a strategy is

1

2
E

x ,y∼Fn
2

 ∑
a,b∈F2

p(a, b, a+ b|x , y , x + y)

+
1

2
E

x∼Fn
2

∑
a∈F2

p(a, a, a|x , x , x)


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Strategies (cont.)

The total variational distance between two strategies p and q is

∥p − q∥TV = E
x ,y ,z∼Fn

2

∑
a,b,c

|p(a, b, c |x , y , z)− q(a, b, c |x , y , z)|



Small variational distance ⇐⇒ p and q are close

A small variational distance allows us to essentially ”replace” one
strategy with another
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Quantum-soundness of the BLR

Now recall the 3 prover BLR test:

Definition

Let provers A, B, C have some strategy. The verifier performs the
following tests each with probability 1/2:

1 (Consistency) Select x ∼ Fn
2. Send x to A,B,C , and receive outputs

a, b, c. Accept if a = b = c .

2 (Linearity) Select x , y ∼ Fn
2. Send x to A, y to B and x + y to C .

Receive outputs a, b, c . Accept if a+ b = c .

What if the provers have entangled strategies?
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Quantum-soundness of the BLR (cont.)

Instead of having functions f , g , h, Alice, Bob and Charlie now have
measurements {Aa

x}, {Bb
y } and {C c

z } with some shared entangled
state |ψ⟩.

We now wish to test if their strategies are close to some classical
linear strategy.

Can we use still the BLR linearity test for this?

A crucial reduction: given a strategy A,B,C , that wins with
probability p, we can reduce down to a case where A = B = C , and
have a winning probability of at least p.

We call such a strategy symmetric.
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Quantum-soundness of the BLR (cont.)

We still can!

Theorem (Ito-Vidick, 2012 [3])

Suppose three entangled provers succeed in the linearity test with
probability 1-ϵ using a symmetric strategy (|ψ⟩, {Aa

x}), and let its
corresponding probability distributions be {p(a, b, c |x , y , z)}. Then there
exists a classical linear strategy with shared randomness ℓ such that

∥p − ℓ∥TV ≤ 6
√
3ϵ1/2
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Our Results

We generalize the results of Ito-Vidick to Fp:

Theorem

Suppose three entangled provers succeed in the linearity test with
probability 1-ϵ using a symmetric strategy (|ψ⟩, {Aa

x}), and let its
corresponding probability distributions be {p(a, b, c |x , y , z)}. Then there
exists a classical linear strategy with shared randomness ℓ such that

∥p − ℓ∥TV ≤ 6ϵ1/4

√
1 + 2

(
1− 1

p

)1/2
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The Affine Linearity Test

Let’s recall the BLR once more:

Definition

Let provers A, B, C have some strategy. The verifier performs the
following tests each with probability 1/2:

1 (Consistency) Select x ∼ Fn
2. Send x to A,B,C , and receive outputs

a, b, c. Accept if a = b = c .

2 (Linearity) Select x , y ∼ Fn
2. Send x to A, y to B and x + y to C .

Receive outputs a, b, c . Accept if a+ b = c .

If we drop this portion, can we still say anything about the strategies
the players use?
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The Affine BLR

Classically, we can! We can still show the strategies are close to some
deterministic affine linear strategy:

Lemma

Given a classical probabilistic strategy p which succeeds in the linearity
part of the BLR test with probability 1− ϵ, there exists a deterministic
affine linear strategy ℓ such that

∥p − ℓ∥TV ≤ 2
(
1−

(
1−

√
ϵ
)3)

Can we draw the same conclusion with quantum strategies?
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Our Results (cont.)

We generalize this result to the affine linear test in Fp:

Theorem

Suppose three entangled provers succeed in the affine linearity test (i.e.
linearity test without consistency) with probability 1-ϵ using a symmetric
strategy (σ, {Aa

x}). Then there exists a classical affine linear strategy with
shared randomness ℓ such that

∥p − ℓ∥TV ≤ 3
√
2ϵ1/4

√
1 + 2

√
2

(
1− 1

p

)1/2
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